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Abstract

The inherent variability of real-world cellular networks
makes it hard to evaluate, reproduce, and debug the perfor-
mance of networked applications running on these networks.
A common approach is to record and replay a trace of ob-
served cellular network performance. However, we show that
the state-of-the-art record-and-replay technique produces em-
pirically inaccurate results that can cause evaluation bias. This
paper presents the design and implementation of CellReplay,
a tool that records the time-varying performance of a live cel-
lular network into traces using preset workloads and faithfully
replays the observed performance for other workloads through
an emulated network interface. The key challenge in achiev-
ing high accuracy is to replay varying network behavior in a
way that captures its sensitivity to the workload. CellReplay
records network behavior under two predefined workloads
simultaneously and interpolates upon replay for other work-
loads. Across various challenging network conditions, our
evaluation shows that real-world networked applications (e.g.,
web browsing or video streaming) running on CellReplay
achieve similar performance (e.g., page load time or bitrate
selection) to their live network counterparts, with significantly
reduced error compared to the prior method.

1 Introduction

Cellular network performance, including bandwidth and la-
tency, can vary significantly due to factors such as wireless
interference, environmental obstructions, and handovers, es-
pecially in mobile environments [12, 13,22,23,34]. The gold
standard for evaluating application and protocol performance
on cellular networks is, hence, to test them directly on live
cellular networks. However, live testing is time-consuming, as
experiments must be conducted across many different network
conditions and can produce different results—due to different
signal strengths, types of wireless service (e.g., 5G millime-
ter wave, 5G low-band, and 4G), kinds of interference, rates
of mobility, physical locations, etc. Repeating each experi-
ment multiple times is crucial to ensure statistically reliable
results given the performance variability in cellular networks.
In addition to being time-consuming, experiments are often
difficult to reproduce. A lack of control over the environment
makes it infeasible, for instance, to compare the effects of a
protocol change under identical network conditions.

Thus, researchers and app developers often turn to simu-
lation or emulation for much of their evaluation, hoping to
replicate a representative environment that yields performance

similar to a live network. Simulators and emulators, such as
ns3 [28] or Linux’s netem-tc, offer various options for con-
figuring delay, jitter, bandwidth, packet loss, and more. While
they can adjust these parameters to emulate specific and real-
istic conditions, properly tuning them to accurately represent
the dynamic behavior of real-world cellular networks remains
a challenging and open problem.

A more realistic approach is to record network performance
traces (e.g., latency, bandwidth, or packet loss) over time us-
ing predefined workloads (e.g., RTT probing) on a real-world
network and replay those traces in an emulated network for
the tested apps. This method allows for recording different
traces under various conditions (e.g., locations) and testing
multiple apps using such recorded traces. Record-and-replay
emulation was pioneered by Noble et al. [27]. More recently,
the Mahimahi network emulator [25] can also replay recorded
cellular network traces and has been instrumental in the design
and evaluation of several notable networked systems and pro-
tocols (e.g., [5,14,18,20,24,26,30,31,36,37,39,41,43,45,46]).

However, we found that Mahimahi can produce inaccu-
rate results compared to real-world tests in important cases,
particularly for latency-sensitive and bursty workloads. For
instance, in our evaluation, we observed an average bias of
approximately 17.1% in web page load times (PLTs) when
comparing Mahimahi emulation to running the application in
the same commercial cellular environment where the traces
were recorded. This error is a persistent underestimation of
the PLT rather than just random variation. This issue affects
other applications as well and the error may even be greater.
For example, we observed a 49% error for 250 KB file down-
loads when Mahimahi emulated a commercial Verizon 5G as
shown in §5.6.

Thus, despite record-and-replay emulation being practi-
cal and widely used, it does not support high-fidelity testing
of networked systems and protocols. Minimizing emulation
error is crucial, particularly for wireless protocol and applica-
tion research, where record-and-replay emulations are often
the most feasible evaluation platform. These errors could af-
fect any evaluation and may even alter its conclusions, as we
demonstrated in the ABR algorithms use case (§5.9). There-
fore, we asked: What is causing this emulation error? And, is
there a way to fix it to faithfully record and replay real-world
cellular network performance?

Our first contribution is to study how the record-and-replay
method used by Mahimahi can result in persistent bias (§3).
Mahimabhi records packet delivery opportunities by continu-
ously saturating the link with packets (a “saturator” workload)



and noting when packets arrive at the endpoint. It then replays
this trace as a schedule for when the link can deliver packets
after delaying those packets using a fixed propagation delay,
for any workload.

However, we found that this method causes two fundamen-
tal issues. First, it fails to fully capture network base latency
changes, which are prevalent in cellular networks. In fact,
our measurements show that Mahimahi underestimates RTT
by 13.25% and 16.88% across two operators. Second, the
available bandwidth that a cellular network provides to an
end-to-end connection depends significantly on that connec-
tion’s workload'. For example, in our measurement using
Verizon 5G, a long train with 100 back-to-back packets expe-
riences 2.6 times higher delivery rate than a short train with
10 packets. In such cases, Mahimahi’s saturator (i.e., heavy
traffic) would see a higher rate than what shorter traffic should
experience. This dependency between cellular network avail-
able bandwidth and workload poses a fundamental challenge
for record-and-replay because the whole point is to record
one trace (which is necessarily running one workload) and
replay that trace under a variety of applications for testing.
If available bandwidth depends on the workload, is faithful
record-and-replay feasible?

Our second contribution is to address these fundamental
problems in a record-and-replay system called CellReplay.
To solve the workload-dependence problem, one obvious ap-
proach would be to record performance under every possible
workload. However, this is impractical and degenerates into
simply testing every application directly on the live network,
which is what record-and-replay emulation is trying to avoid.
In other words, we can only record a limited number of differ-
ent workloads. Another option would be to build a white-box
emulation of providers’ underlying resource allocation poli-
cies; but these are proprietary and vary across providers, so we
seek a black-box method based on end-to-end observations.

The approach we take is to record just two representative
workloads (light and heavy) simultaneously, chosen at ex-
tremes on the range of traffic patterns, and then interpolate
between them during replay to achieve high accuracy across
a wide range of workloads. During the recording phase, we
use two phones: one running a heavy saturator workload and
the other running a light workload. The light workload is cali-
brated to capture RTTs and light-workload bandwidth, but is
not too light as to capture the network’s transition from light
to heavy bandwidth allocations. During replay, the emulator
applies delay using the RTT trace and initially releases pack-
ets according to the light trace. It then splices in the heavy

ITo be clear, this effect is not due to queuing behavior of a traditional link
with constant throughput and latency; nor is it caused by variations in wireless
physical channel quality over time. Although commercial providers’ internal
policies are proprietary and opaque to us, the effect could be explained by
a resource allocation policy (e.g. [9]) or a carrier aggregation policy (as
observed in [40]) at the Radio Access Network (RAN) allocating some
bandwidth for the client, but observing the client’s injected packets and
dynamically modifying that provided bandwidth.

trace during longer packet sequences before eventually re-
turning to the light trace after an idle period. This technique
addresses the two key problems with Mahimahi’s approach
mentioned above, namely capturing (1) dynamic RTTs and
(2) bandwidth that depends on workload.

We implemented CellReplay using an architecture similar
to Mahimahi—an emulated network interface that can be
used by unmodified applications. Using randomized trials, we
evaluated CellReplay’s accuracy by comparing the application
performance when running under CellReplay emulation to
the live networks. We tested two commercial providers’ 5G
mid-band and low-band deployments, and covered multiple
network conditions, including non-ideal conditions (e.g., in a
crowded library) and mobility (e.g., driving). We evaluated
two real-world application traffic patterns: randomized file
downloads and web page loads with HTTP/1.1 and HTTP/2.
These applications cover a variety of workloads, ranging from
periodic small to heavy flows in file downloads to complex
interleaved traffic from web page loads. Additionally, we used
CellReplay to evaluate the startup phase of multiple adaptive
bitrate (ABR) implementations for 4K video streaming.

We find that CellReplay substantially reduces emulation
error. In web page load tests, CellReplay reduces emula-
tion error from 17.1% with Mahimahi to 6.7%, represent-
ing a 60.8% improvement. For randomized file download
tests, CellReplay lowers mean file download time errors from
7.9%-49% with Mahimabhi to just 0.2%-22.4%. Moreover,
CellReplay achieves lower error when replicating application
performance under non-ideal network conditions, such as in-
side a basement (15.22% error in Mahimabhi vs. 5.87% in
CellReplay) and a crowded library (22.51% vs. 8.47%), and
during user mobility, such as walking (14.48% vs. 4.13%) and
driving (13.15% vs. 6.97%). Finally, we demonstrate Cell-
Replay’s usefulness in evaluating ABR algorithms, as it pre-
serves the relative ordering of ABR performance and avoids
the biases observed in Mahimahi. We discuss challenges and
future directions for improvement in §6. We release CellRe-
play alongside with its recorded traces as an open source at
https://github.com/williamsentosa95/cellreplay

2 Background and related work
2.1 Cellular network record-and-replay

The goal of record-and-replay network emulation (within the
scope of this paper) is to emulate the end-to-end network per-
formance of an application communicating between two end-
points, ensuring performance similar to that of a live network
counterpart. During the recording phase, user equipment (UE)
and the server send traffic according to a predefined workload
(e.g., sending packets beyond the link bottleneck rate), while
observed performance metrics (e.g., throughput) are logged.
This workload should be independent of the tested applica-
tions, allowing us to record traces once and reuse them for
multiple applications, regardless of whether they are UDP- or
TCP-based. During replay, this trace is consumed by an emu-



lated network interface. Real applications (e.g., a web browser
and web server) can connect through this interface, and traffic
between the endpoints will experience artificial network con-
ditions (e.g., time-varying latency and bandwidth) as if they
were communicating over a cellular network, even though
they reside on the same physical host. Our goal is for any
metrics of interest—including transport-level and application-
level metrics such as flow completion time or web PLT—to
closely match those of the live network.

Record-and-replay can be applied to any type of net-
work, but our interest here is on cellular networks. Their
performance can be time-varying, vendor-dependent, and
environment-dependent, making it difficult to generate
conditions—whether in simulators, emulators with hand-
picked or even calibrated [42] parameters, or testbeds—that
match real-world complexity. Thus, record-and-replay is es-
pecially useful in such environments, but it is also challenging
to execute well.

Note that record-and-replay deals with end-to-end condi-
tions and does not require any link- or physical-layer infor-
mation or support from network operators. Like past work,
we do not need to determine which hops along the path cause
certain performance effects. This means that the observed
performance, and its replay, may result from a combination of
sources (e.g., the 5G RAN, service provider core, or the Inter-
net to a remote endpoint). However, major performance varia-
tions are expected to originate from the cellular network [22].
We sometimes refer to the observed performance as coming
from a cellular link, the path, or simply the network; all terms
are equivalent for our purposes.

2.2 Related work

Network emulators. Popular network emulators, such as
NetEm [16] and dummynet [32], can emulate cellular net-
works. Google Chrome also provides configuration profiles
with fixed latency and bandwidth for cellular networks, such
as "Fast" and "Slow" 3G [3]. Pantheon [42] provides cali-
brated emulators based on parameters like fixed propagation
delay, bottleneck link rate, isochronicity, etc. These configu-
rations are tuned to match packet traces collected from a path
(including cellular network) using various congestion control
protocols. iBox [7] extends this by incorporating cross-traffic.
However, fixed parameters, by definition, do not capture time-
varying effects, which are common in cellular networks.
Record-and-replay network emulation. Noble et al. pio-
neered the concept of recording the end-to-end network char-
acteristics of a wireless network and replaying them in an
emulated network in 1997 [27]. However, it is designed to em-
ulate WaveLLAN, which differs fundamentally from modern
cellular networks. More recently, NemFi [21] was introduced
as a record-and-replay emulator for WiFi. NemFi’s design is
specific to WiFi (e.g., emulating frame aggregation) and it is
not readily applicable to emulating cellular network paths.
Mahimabhi. In 2015, Netravali et al. demonstrated a frame-
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Figure 1: An overview of Mahimahi’s record-and-replay to emulate
cellular uplink.

work for recording and replaying HTTP traffic [25] called
Mahimabhi, which also included a network emulator derived
from CellSim [38] to replay time-varying uplink and down-
link rates in cellular networks. Mahimahi has since become
the state-of-the-art record-and-replay emulator for cellular
networks and is widely used to evaluate various networked
applications.

We detail Mahimahi’s record-and-replay approach?, as it
serves as an important reference for this paper. Fig. 1 illus-
trates the process for the uplink only, as the same approach
applies to the downlink. Mahimahi records time-varying link
rates using a Saturator, which saturates both the uplink and
downlink with MTU-sized packets (e.g., 1500 bytes) to en-
sure that the base station always has packets to deliver. The
endpoint then records the arrival time of each packet. Dur-
ing emulation, Mahimabhi treats each arrival timestamp as an
opportunity to deliver a packet. A sequence of such times-
tamps constitutes a packet delivery opportunity (PDO) trace.
Each PDO entry represents an opportunity to deliver an MTU-
sized amount of data, which can be either a single MTU-sized
packet or multiple smaller packets whose combined sizes add
up to the MTU. If no packets are queued for delivery when
the PDO occurs, the opportunity is lost. Mahimahi also em-
ulates the RTT delays on a cellular link, albeit using a fixed
propagation delay. That delay is determined by measuring the
minimum packet RTT (e.g., via ICMP ping) and halving that
value.

3 Live record-and-replay is hard

Why is record-and-replay challenging? Also, why does the
current state-of-the-art method (i.e., Mahimahi) fail to accu-
rately replicate the performance of networked applications on
a cellular network? Below, we answer both questions using
measurements and insights from real cellular networks.

The measurements in this section were collected from two
commercial cellular networks: T-Mobile 5G mid-band and
Verizon 5G low-band, using a Samsung Galaxy S22 (SGS)
phone tethered to a laptop. The laptop, equipped with an Intel
i7 CPU and 16 GB RAM, ran Ubuntu 20.04 and served as our

2This method was introduced by CellSim. Mahimahi also provides traces
recorded in CellSim’s approach, which have been beneficial and used in
past work (e.g., [20]). Due to its usefulness, other work has collected newer
cellular network traces following CellSim’s approach (e.g., [19,26]) and
replayed them in Mahimahi. For simplicity, throughout the rest of this paper,
we refer to this record-and-replay method as Mahimahi.
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RTT distribution.

client. The server was located within close proximity (<10
miles) of the client. We confirmed that all results remained
consistent when using a different phone model (Google Pixel
5).

3.1 Variability in base RTT

The base RTT is defined as the round-trip time (RTT) of
a packet from the client to the server when there is no self-
inflicted congestion. In cellular networks, this RTT is expected
to be variable, as packets frequently experience delays (jitter)
due to link-layer retransmissions, channel contention, base
station scheduling, and device mobility. Emulating this vari-
ability is critical for testing latency-sensitive applications such
as VR/AR and remote driving.

Mahimahi also emulates delay variability based on packet
delivery traces. Despite using a fixed propagation delay, it
must hold the packet until it sees a PDO before releasing it
(Fig. 1). However, our measurements suggest that it fails to
fully capture the base RTT variability. To quantify this error,
we compared the packet RTT reported in live experiment with
that of Mahimahi.

Specifically, we conducted repeated packet RTT tests and
Mahimahi recordings individually over live networks, follow-
ing the randomized trial approach (§5.3). The packet RTT test
involves a client sending a 1400-byte UDP packet (roughly
an MTU-size) every 50 ms to our echo server and noting each
packet’s RTT. We repeated this test 10 times, and both the RTT
test and Mahimahi recording session lasting 60 seconds. Next,
we ran the exact same packet RTT test under Mahimahi’s
emulated interface, using the recorded trace and setting the
propagation delay to half of the minimum RTT from the live
packet RTT tests.

Figure 2 shows the cumulative distribution function (CDF)
of packet RTTs on the live network and Mahimahi replay.
It indicates that Mahimahi underestimates packet RTT (by
16.88% and 13.25% at the median for T-Mobile and Verizon,
respectively), and its distribution differs from that of the live
network (as seen in the shape of the CDF curve). This sug-
gests that simply increasing Mahimahi’s fixed propagation
delay (i.e., shifting the CDF curve to the right) does not cap-
ture the variability. Note that this experiment was performed
under stationary conditions with a strong signal, where net-
work performance is more stable. In a mobile scenario, where
packet RTT can vary more or even change, Mahimahi’s fixed
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Figure 3: Mahimahi PDO approach fails to capture the base delay
changes for sparse workload.

propagation delay approach may perform even worse.

This is because PDOs, in principle, only partially capture
base delay changes. Figure 3 illustrates a case where the
packet base delay changes at t, from 20 ms to 40 ms, and
Mahimabhi fails to apply the correct delay for a certain packet.
Note that base delay changes may occasionally occur in live
cellular networks due to factors such as increased retrans-
mission delays caused by a weakened radio signal. In this
illustration, during the recording phase, the four packets de-
livered from #; to f, experience a 20 ms base delay, while
packets from 1, to t3 experience a 40 ms base delay. The re-
ceiver indeed perceives a delay change since, after receiving
four packets, it does not receive any packets for 20 ms before
receiving the next set. This 20 ms “blackout” period is also
reflected in the PDO trace during the replay.

A PDO blackout means no packet delivery. Any packets
scheduled for delivery during this period will be delayed un-
til the next available opportunity. As a result, only packets
arriving during the blackout period (relative to the link emu-
lator) will experience a delay, while others will not. However,
sparse workloads, such as those in Fig. 3b, may have packets
arriving outside the blackout period and thus not experiencing
any delay.

Conclusion: Fixed propagation delay and PDOs are insuf-
ficient to model cellular network delay variability. Therefore,
we need to record packet RTTs over time through probing
during the recording phase and apply time-varying delays
during the replay.

3.2 Performance depends on workload

Recall that Mahimahi uses a Saturator to ensure that the net-
work always has packets ready to send, and so any avail-
able PDOs will be consumed and recorded. Then, a subset
of those PDOs is used when replaying any given workload.
An underlying assumption is that the same PDOs would have
been available for the replayed workload. However, our ex-
periments on live cellular networks show that the network
substantially changes the PDOs it provides depending on
the workload. We reached this conclusion upon observing
that short flows consistently experience lower bandwidth than
longer flows.

To demonstrate this, we conducted live experiments in
which our server periodically sent packet trains to a client.
Each train consists of N back-to-back UDP packets, each
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1400 bytes, followed by a 100 ms gap—long enough to clear
out any packets from previous trains). We refer to N as the
train size. Each packet in a train is tagged with a train num-
ber and a sequence number reflecting its order within a train
(Po,...,Py—1). The client then records each packet’s arrival
time. Additionally, the client sends a 100-byte ACK back to
the server upon receiving the last packet of a train (Py_1).
The train completion time (TCT) is defined as the time at
which the server receives the ACK minus the time it sent Py.
We performed this test with different train sizes following our
randomized trial approach (§5.3). Each test lasted 5 seconds,
and there are 12 tests with different train sizes (1, 10, 25, 50,
..., 500) in one trial. We repeated this trial 50 times. Finally,
we also recorded network performance with the Saturator, as
Mahimahi would.

Figure 4 shows the mean TCT for each train size on T-
Mobile and Verizon 5G. The dashed black line represents the
TCT if the link had a fixed bandwidth equal to that observed
by the Saturator (equivalent to the mean TCT with Mahimahi
replaying the Saturator). If network performance were inde-
pendent of workload, then the mean bandwidth would remain
the same for all train sizes, and the mean TCT would fol-
low a linear function of the amount of data being delivered,
i.e., a linear function of N. In particular, it should coincide
with the bandwidth observed by Saturator. However, the ob-
served TCTs do not conform to a straight line and generally
do not match the Saturator line, with TCTs being up to 11.5%
higher than the Saturator in T-Mobile and 35.8% higher in
Verizon. This indicates that the service experienced by the
train workloads is consistently and significantly different than
the service experienced by the Saturator’s heavy workload.

To better understand these observations, we examined
the arrival times of packets within each train, revealing the

PDO patterns recorded by different trains. For each packet
P; € {Py,...,Py_1} in each train, we calculated its relative
arrival time as t(P;) —t(Py), where #(-) denotes the receiver’s
observed arrival time of a packet. We present the mean rel-
ative arrival time as a function of packet sequence number i
for different train sizes N in Figure 5.

These results confirm that the link’s rate (or PDO) depends
on the workload. The network provides a lower delivery rate
for the first few packets in any train (note that in these plots,
a higher slope indicates a lower delivery rate). As the train
progresses, the delivery rate increases, and the slope begins
to approach that of the Saturator. We also repeated the same
packet train tests in the opposite (uplink) direction but found
that the link’s rate remains uniform regardless of N (i.e., it
follows a straight line). We suspect that the rate-workload
dependence in the downlink results from the operator’s pro-
prietary packet scheduling implementation. For example, cel-
lular network packet scheduling may depend on historical
application traffic and the current queue depth when schedul-
ing packets [9]. This rate-workload dependence was observed
across all conditions tested in §5, including both peak and
off-peak hours.

Interestingly, T-Mobile and Verizon have dramatically dif-
ferent implementations. T-Mobile’s delivery rate approaches
the Saturator’s rate (slope) as i increases, mostly regardless
of N. Verizon’s delivery rate, on the other hand, asymptotes
to significantly different values depending on N, with larger
N approaching the Saturator’s heavy-workload delivery rate
more closely. Additionally, in T-Mobile, the first 50 packets
of trains with N > 50 are delivered more slowly than the 50
packets of the train with N = 50, whereas Verizon shows an
inverted behavior. This further complicates record-and-replay,
as we aim for a general and relatively accurate approach
across different operators and locations.

We also found a more minor way in which performance
depends on workload: the RTT of a packet varies with packet
length by an amount not explained by throughput. For in-
stance, based on our measurements on Verizon, the RTT of
a 100-byte packet is 6.8 ms faster than that of a 1400-byte
packet, even though the difference in serialization time at the
bottleneck link rate (60 Mbps) should have been only = 0.17
ms. This outcome aligns with findings from the prior latency
study on 5G [12] and may be attributed to the additional time
required for reassembling larger data chunks. Due to space
constraints, we omit detailed results.

Conclusion: Cellular network performance can depend
significantly on the workload. Our observations indicate that
cellular providers allocate delivery rates (i.e., bandwidth or
PDOs) differently for light and heavy workloads. The Satu-
rator forces the link into its heaviest workload mode, which
generally increases the available bandwidth. Consequently,
using Saturator’s PDOs for a lighter workload can result in
consistent bias (flows complete faster than they should). This
suggests that diverse workloads are needed to capture differ-



ent PDOs, but choosing the right representative workloads
remains challenging.

4 CellReplay
4.1 Design overview

At a high level, we want to solve the problems of captur-
ing time-varying base RTT (§3.1) and workload-dependent
performance (§3.2) in both record and replay.

We begin with the latter problem (§3.2). To achieve highly
accurate emulation, an obvious solution is to record perfor-
mance under different workloads. However, recording every
possible workload is impractical and degenerates into simply
testing the apps directly on the live network. We also aim for
the recorded workload to be independent of the tested apps
(§2.1). Therefore, we can only record a limited number of
different workloads.

From §3, we observe that short and continuous traffic are
handled differently, while medium-length flows exhibit per-
formance somewhere between the extremes. Inspired by this
observation, our key approach is to record two workloads cho-
sen at the extreme points on the spectrum of traffic patterns:
(1) Packet train probing to capture link PDOs under short
and bursty load (light PDOs), and (2) Saturator to capture
PDOs under heavy continuous load (heavy PDOs). These
workloads capture the essential behavior of link rate differen-
tiation under light and heavy flows. We used two phones to
record both traces simultaneously and show in our evaluation
that interference between them is limited in practice.

During replay, we leverage both PDOs to match the pro-
vided workload. When the application under test begins send-
ing packets, we initially release the first sequence of packets
according to the light PDOs and then transition to heavy
PDOs as the packet sequence lengthens. After a certain gap
in the workload, we return to the light PDO trace.

Returning to the problem of time-varying RTT (§3.1), we
design the packet trains to avoid inflating queues, so that it
gives us a good measurement of base RTT. The packet train
probing serves a dual purpose: to record changing base RTTs
(for any workload) and PDOs for shorter packet sequences.

Finally, the effectiveness of the above design depends on
parameter choices. For example, a too-small train will not
capture the network’s light workload behavior completely,
forcing us to go to the heavy PDO trace too soon; if the
trains are too large, we cannot sample frequently as network
performance may then resemble that of a heavy workload,
and there is a risk of inflating base RTT measurements due to
congestion. Thus, before recording, we conduct a calibration
phase to determine train size, train gaps, and other parameters
that will yield the least error.

In summary, CellReplay has three components. When
recording network traces in a specific environment, we first
perform an automated calibration of parameters in that en-
vironment, and then start recording live traces by running
packet train probing and Saturator in parallel. These traces
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Figure 6: Packet train workload alongside with its recorded base
delay and light PDO traces for uplink and downlink.

are then used to emulate the network during replay. The fol-
lowing subsections detail each of these components: record
(§4.2) and replay (§4.3), before returning to calibration (§4.4),
which is best understood after seeing the rest of the design.

4.2 Recording network traces

There are three time-series metrics we want to record: (1)
base delay, (2) light PDOs, and (3) heavy PDOs.

Base delay and light PDOs. The base delay trace should
reflect the network’s round-trip time (RTT) without any queue-
ing delays introduced by the workload itself. Ideally, this trace
would be captured by periodically measuring the RTTs of
small packets. The one-way base delay can be estimated by
halving the RTT.

Light PDOs can be captured by periodically sending a lim-
ited number of back-to-back packets, i.e., a packet train, in
both the uplink and the downlink. The number of packets
should be small enough to capture the network’s light work-
load behavior and ideally some of the transition to moderate
workload, without pushing the network into heavy workload
mode. In particular, the train should be short enough to avoid
“warming up” the network for the following train. As a result,
both the base delay trace and light PDOs share similar require-
ments. We can collect both simultaneously using a packet
train probing workload on a single device. This workload
uses MTU-sized packets, as a significant amount of traffic is
still required to capture the transition point between light and
heavy modes.

Figure 6 provides an example of how this process works.
In every G ms, (a) the client sends U back-to-back MTU-
sized packets to the server. Upon receiving the first packet
of the train, (b) the server sends back D back-to-back MTU-
sized packets. The server also (c) records each packet’s arrival
within that train and uses it to calculate the uplink light PDOs
as the arrival time of each packet minus the arrival time of the
first packet (since, during replay, the base delay will be added).
When the client receives the corresponding downlink train,
(d) it infers the current base RTT as the receipt time of the
first downlink packet minus the send time of the first uplink
packet (within that train). It then calculates the downlink light
PDOs based on packet arrival times, just as the server did.

Heavy PDOs. The heavy PDOs are collected using a Satu-
rator (similar to Mahimahi) that saturates the link with packets
beyond its bottleneck rate, effectively “requesting” the link to
remain in max bandwidth mode. In practice, we developed our
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own Saturator tool, which sends MTU-sized packets in both
the uplink and downlink at fixed upload and download rates,
eliminating the need for two phones as in Mahimahi’s Satura-
tor [38]. We overestimated (by 25%) the max link bandwidth
measured using an existing bandwidth test application like
iperf or speedtest. We confirmed that the reported throughput
from our Saturator is similar to UDP iperf.

However, running both Saturator and packet train probing
on a single device is not feasible, as the Saturator will over-
load the queue, leading to two issues: inflating the base delay
measurement and keeping the link in maximum bandwidth
state. One solution is to run these workloads in separate tri-
als, which may be permissible under stationary conditions
but is less ideal under mobility. Alternatively, we chose to
perform these workloads on separate identical phones placed
in close proximity. This is possible since most (if not all)
cellular network providers employ user-separated queues [38]
such that the Saturator traffic will not inflate the packet train
probing measurement results. Beyond the known separation
of queues, we confirmed that light vs. heavy bandwidth allo-
cation is also separated on both Verizon and T-Mobile: when
one phone runs the Saturator, the other phone running packet
train probing still experiences light-workload service.

Note that the two-phone method is not without limitations.
The phones may not always connect to the same base station
all the time, especially in a mobile environment where hand-
offs could occur slightly differently. We leave this discrepancy
for future work.

4.3 Replaying network traces

CellReplay takes input traces of base delay, light PDOs, and
heavy PDOs over time to emulate network performance in
a virtual interface. At a high level, CellReplay first applies a
base delay to each packet based on the delay trace, adjusts
the delay for any latency offset from packet-size calibration
(§4.4), and then releases packets according to either the light
or heavy PDOs.

In more detail, CellReplay operates in two states: active
and inactive. Initially, CellReplay is in the inactive state until
it receives a packet at some time ¢, relative to the start of the
emulation. This event triggers CellReplay to enter the active
state, which involves preparation as shown in Figure 7. Cell-
Replay searches for the most recent base delay (DELAY) and
light PDOs (Light PDO) where the timestamp is < ¢. Since
the trace is sampled per G, linear interpolation is used to
assign DELAY to packets arriving between two samples. Cell-

Table 1: Parameters set in calibration phase (§4.4).

Parameter  Definition
U Number of packets per uplink train
D Number of packets per downlink train
Gmin Lower bound of gap between trains (milliseconds)
F Fallback timer to return to inactive state
comp(s) Delay compensation for s-byte packets
B Bottleneck buffer size in bytes

Replay then saves DELAY and constructs temporary PDOs
(TempPDO) by adding every PDO entry in Light PDO with
t+ DELAY . It then concatenates these with the suffix of the
heavy PDOs, starting from ¢ + DELAY +max(LightPDO) + 1.
The system is now done entering the active state.

As long as the system remains in the active state, packets
are initially delayed by DELAY plus a size-based delay com-
pensation comp(size(P)). As discussed in §3.2, base delay
may depend on packet size; the specific adjustment comp(-)
is determined during calibration. DELAY and TempPDO re-
main unchanged unless the system enters an inactive state>.
After a packet is delayed, it is either placed in a PDO queue or
dropped if the queue exceeds B bytes. Packets are dequeued
according to the time schedule in TempPDO using byte-wise
dequeueing. This process mirrors Mahimahi’s PDO replay,
with CellReplay using the temporary (concatenated) PDO
trace. As a result, early packets in the active state will experi-
ence light PDOs, while later packets will experience heavy
PDOs. Once F milliseconds pass without any packets in the
PDO queue, CellReplay returns to the inactive state. Any fu-
ture arriving packet will then trigger the procedure to reenter
the active state, as described above.

4.4 Parameter Calibration

We describe how to select values for the parameters in Table 1.
The parameters U, D, Gy, F, and comp(s) are exclusive to
CellReplay and are calibrated in every new environment be-
fore recording traces. This process is automated. B is a stan-
dard network emulation parameter, derived using a classical
max-min approach [11]. For details, see §A.3.

Setting U and D. We profile the network to determine a
packet train size that provides the best overall approximation
of the network across other sizes. We first conduct random-
ized experiments with different packet train sizes (the same
as §3.2) using a fixed train gap that is conservatively large
enough to ensure the link returns to its light-workload state.

3Replaying base RTT changes during the active period could lead to
double-counting, as PDO traces already capture some RTT changes in the
form of gaps between PDOs. While this might seem counterintuitive to
our goal of emulating time-varying base delay, the issue discussed in §3.1
only arises when there is a gap in the workload packets that empties the
queue. However, in such cases, CellReplay has an opportunity to re-enter the
inactive state and select another base RTT. Although there is a slight chance
that the workload gap is shorter than the inactive-state timer F, F is typically
small (e.g., 5 milliseconds), so we did not find this to be a major problem in
practice.
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In our implementation, we use a 100 ms gap, and the set of
train sizes we consider is {5, 25, 50, 75, ..., X} where X is
chosen such that the resulting mean sending rate (including
gaps between trains) is half of the bottleneck throughput.

After running for 10 trials, we compute Ry (i) for each train
size, which represents the mean relative arrival time of the
i-th packet in an N-packet train. The relative arrival time is
the packet’s arrival time minus that of the first packet in its
train. Ry essentially represents the mean light PDOs of an
N-sized train. We further define Ry (i) as the estimated mean
arrival time of the i-th packet in replay mode, assuming we
choose to record trains of size N. More specifically, recall
that during replay, we follow light PDOs before splicing in
the heavy PDOs; therefore, Ry (i) = Ry(i) for i < N, and
otherwise, Ry (i) = Ry (N) + heavy(i — N), where heavy(x) is
the delivery delay of x packets based on the mean throughput
of the heavy workload.

The purpose of R}, (i) is to help us calculate the estimation
error of Ry(N) (i.e., the mean relative arrival time of the
last packet of an N-packet train) for every other train size N
that we have tested. Let L be the train size used to estimate
the error for other trains. Fig. 8(a) shows the estimation error
when using L = 100. The blue line is R}y, (i), which represents
the PDOs based on the concatenation of mean light and heavy
PDOs. If we use that to estimate Ry(N) of other trains N €
{25,50,200}, the prediction will result in some error (shown
in red). For each train size L, we compute the mean error
over all tested train sizes, and our chosen train size is the L
that yields the smallest mean error. We conduct the entire
procedure in two directions (uplink and downlink) separately
to choose the train lengths U and D.

Finding G,,;,. If the train gap G is too small, the link will
not have enough time to reset to its light-workload mode
before the next train arrives. We typically set G = 50 ms
for stationary conditions and G = 100 ms for mobile condi-
tions. However, in certain environments, this may not be large
enough. We thus aim to find G,,;,,, the smallest value at which
the link has enough time to return to its light-workload mode,
ensuring that our chosen G is at least that value.

We conduct another randomized experiment, this time test-
ing different train gaps. Again, we send sequences of trains;
however, in this case, we fix the train length at our cho-

sen value (U or D, for uplink or downlink, respectively, in
separate experiments) and vary the gap g. We begin with
a conservatively large gap (as in the previous experiment)
and test gaps of decreasing size; in our implementation,
g € 100,90,80,...,10 ms. Let r;,y(g) denote the mean rel-
ative arrival time of the last packet in trains with gap g. Intu-
itively, as g decreases to a too-small size, the link will begin
staying in its heavy-workload mode, causing ry.(g) to de-
crease. We set G, as the smallest g for which ry,,(g) is
within 20% of its value with the conservatively large gap, i.e.,
F1ast (100ms). In the example of Fig. 8(b), CellReplay selects
Gin = 30 ms.

Inferring F. Recall that F' determines how long CellRe-
play’s emulated link remains idle in the active state before
transitioning back to the inactive state. We derive F' using the
same data collected to select G,,;,, which involves calculating
the difference between G,,;, and the time required for the
queue to clear, which is observable as ry,g (Gmin ). For details,
see SA.2.

Inferring comp(). We profile how RTT is affected by
packet size by sending randomly sized packets between {100,
200, ..., 1400} bytes every 50 ms to a receiver that responds
with a 100-byte ACK. We then measure the RTT difference
for a packet size of s compared to the RTT of 1400-byte pack-
ets and model this difference as comp(s). We describe this in
more detail in §A.1.

5 Evaluation

Our goal is to evaluate the accuracy of CellReplay’s emu-
lation in replicating application performance compared to
its live network counterpart. We also compare CellReplay
with Mahimahi [25]. We implemented CellReplay record tool
in Java and Python 3 to send and receive UDP packets. We
extended the Mahimahi shell to support CellReplay replay,
allowing unmodified applications to run inside the shell and
experience the emulated network conditions induced by Cell-
Replay. For more details, refer to §B.

The evaluation includes experiments that test CellReplay’s
accuracy across (1) different networked applications, includ-
ing web browsing and random file transfers using TCP, (2) dif-
ferent cellular providers and technologies, including T-Mobile,
Verizon, 5G mid-band, and 5G low-band, and (3) different
environmental conditions, such as good signal strength, weak
signal strength, crowded areas, and various mobility levels
(stationary, walking, and driving). For full details on the envi-
ronments and their calibration parameters, refer to §C. Finally,
we present a use case of using CellReplay and Mahimahi to
evaluate ABR algorithms.

5.1 Experimental setup

We designed two test setups: a live network and an emulation
test setup, as shown in Figure 9. The live network test setup
was used for running application tests on the live network.
During the tests, we tethered a laptop to phones connected
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Figure 9: Live network and emulation application test setup.

to 5G or 4G networks. The client application (e.g., a web
browser) and the application server (e.g., a web server) com-
municate via a UDP tunnel (based on [42]). We deployed our
server (i.e., the remote endpoint) in the same geographical
area—within 10 miles of the phones—to minimize the network
path length and, consequently, reduce the likelihood of expe-
riencing congestion over long paths. We also used a similar
setup, albeit without a tunnel, to record the cellular network
traces using UDP traffic. However, instead of a single phone,
we used two identical phones to separately perform packet
train probing and the Saturator workload.

We used the emulation test setup to test applications under
an emulated network interface that employed either CellRe-
play’s or Mahimabhi’s replay approach. Although this setup
is similar to the live network test, we made two modifica-
tions: (1) we replaced the USB-tethered interface with a di-
rect high-speed Ethernet connection to our server via a single
switch, and (2) we ran the tunnel inside either CellReplay’s or
Mahimahi’s replay network-emulation shell, which emulates
the network using recorded traces. The same client and server
devices were used for record and replay.

End-point specifications. We used two Samsung Galaxy
S22 (SGS) and two Google Pixel 5 (Pixel) phones for testing.
We had an unlimited data plan from both T-Mobile and Veri-
zon. Since we observed no performance difference between
the SGS and Pixel across different operators, we connected
our SGS devices to T-Mobile and our Pixel devices to Ver-
izon for convenience. The laptop in our setups featured an
Intel Core i7 CPU, 16 GB RAM, and a 512 GB SSD, running
Ubuntu 20.04.

5.2 Applications under Test

We tested CellReplay’s fidelity using two real-world appli-
cations: (a) web-page loads, which exhibit complex traffic
patterns and represent the most popular application type on
mobile devices, and (b) random file downloads, which have
simpler traffic patterns but involve large-sized flows.

Web page load test. Our client ran a Chromium browser
to load a web page from our server. To generate the list of
web pages for our testing, we began by randomly selecting
200 internal and landing pages from the Hispar list [6]. Using
Chromium, we loaded all pages and recorded each page’s
total size of the compressed web objects. We then sorted
the pages based on this total size and selected five pages

each for landing and internal pages corresponding to the 10",
30™, 50™, 70™, and 90" percentiles of the distribution. We
use 'L-ID’ and ’I-ID’ to refer to an individual landing and
internal page, respectively. 'ID’ is a number indicating the
order based on page size, where lower values represent smaller
page sizes. Refer to §D for the exact list of pages and their
page composition).

We utilized Mahimahi’s HTTP record-and-replay frame-
work [25] to replay these pages, ensuring that the fetched
content for a given page remained consistent across all trials.
First, we recorded all HTTP requests and responses using
mitmproxy [2], following Mahimahi’s record format, while
loading a web page using a headless Chromium browser. Next,
we used Mahimahi’s ReplayShell to serve the responses over
the HTTP/1.1 (using Apache2) or HTTP/2 (using h2o from
the [47] extension).

In our test setup (Fig. 9), ReplayShell was deployed on our
server, while the laptop ran a headless Chromium browser
to repeatedly fetch a web page. We cleared the browser and
DNS caches before every web-page fetch, and we used TCP
Cubic, the default TCP implementation on Linux, for this
test. Lastly, we measured page-load time (PLT), based on the
onLoad event [29], as the application performance metric.

Random file download test. For this test, we implemented
a client that sends download requests (each fewer than 10
bytes) to a server. Each request selects a file uniformly at
random from a list of files of varying sizes, and the server
delivers the corresponding file data. After completing the
transfer, the client then sleeps for 50 ms before requesting
another file. We implemented the client and server in Python
and used TCP Sockets. We measured the file download time as
the turnaround time between when the client sends its request
and when it receives the requested file.

Adaptive video streaming over HTTP. We ran a client-
server setup from [4,20], which includes multiple adaptive
bitrate (ABR) streaming implementations. However, instead
of using the 2K video from that setup, our server hosts a 250-
second-long AVC 4K video (indoor soccer from [35]) with
a 4-second chunk duration encoded with 12 bitrates of [100,
200, 375, 550, 750, 1000, 1500, 3000, 5800, 7500, 12000,
17000]. We used a Chromium browser to run the video player.

5.3 Methodology

Randomized trials. When evaluating a networked system’s
performance on the CellReplay emulated interface versus the
live network, we must account for cellular network variability.
Thus, all our experiments used randomized trials. Each exper-
iment comprised multiple trials, with each trial consisting of
multiple tests and recording sessions. A test involved running
an application (e.g., loading a web page) on a live network,
while a recording session (e.g., CellReplay record) gathered
a trace of the live network. The tests and recording sessions
ran for the same duration, and we randomized the sequence



of tests and sessions within each trial. We then compared
the application’s performance (across multiple tests) on the
live network to that on the emulated network to calculate the
emulation accuracy.

Calculating the emulation accuracy. We quantified em-
ulation error using the normalized difference between two
distributions of application performance: one from the live
network and the other from the emulation. To measure the
difference between these distributions, we used Earth Mover’s
Distance (EMD) [33], defined as: EMD(L,T) = [*2|L(x) —
T (x)|dx, where L and T are the cumulative distribution func-
tions (CDFs) of the observed application performance on the
live and emulated networks, respectively. A lower EMD value
indicates a high-fidelity emulation, meaning the performance
distributions are more similar. Finally, we calculated the emu-
lation distribution error by dividing the EMD with the mean
(performance) value from the live network tests.

Other details. In each new network environment (or net-
work operator), we first performed a calibration. To record
CellReplay traces, we used one phone (primary) for packet
train probing and the other (secondary) for running the Satura-
tor. The primary phone was also used for calibration, testing
applications on the live network, and recording Mahimahi
traces using our own Saturator. For propagation delay, we
provided Mahimahi with the minimum base delay observed
from the packet train workload. During data collection, both
phones (UEs) were held together at a close distance (= 12
inches). We also confirmed that both probing devices were
attached to the same cell in all tests, except in the driving
case.

5.4 Microbenchmarks

We first evaluated how accurately CellReplay emulates the
time-varying base RTT and the non-uniform delivery rate in a
cellular network. We conducted packet RTT and packet train
tests (refer to §3.1 and §3.2) as separate experiments. Each
experiment consisted of 30 randomized trials, with each trial
including two record sessions (CellReplay and Mahimahi)
alongside packet RTT and packet train tests. The sessions (as
well as tests) lasted for 10s. All tests were performed under
“good” network conditions, i.e., UEs were held stationary near
a window.

First, CellReplay accurately records RTT changes over
time, with the CDF of packet RTTs closely overlapping with
the live network (Figure 10). As expected, Mahimahi persis-
tently underestimates RTT (e.g., median RTT is underesti-
mated by 16.88% on T-Mobile and 13.25% on Verizon) and
produces an RTT distribution that deviates from the live net-
work. Second, CellReplay captures the non-linearity in train
completion times as train size increases more accurately than
Mahimabhi, thanks to its light and heavy PDOs approach. The
packet train experiment demonstrates CellReplay ’s interpola-
tion error when using a pre-defined train size (e.g., 75 packets
for T-Mobile) for workloads ranging from 1 to 200 packets.

For trains longer than 75 packets on T-Mobile and 100 packets
on Verizon, CellReplay achieves lower interpolation errors
than Mahimahi’s single (heavy) PDO approach, reducing er-
rors from 26.68% to 6.44% on T-Mobile and from 43.24%
to 7.74% on Verizon for a train size of 200. CellReplay ’s
interpolation errors for longer trains highlight an opportunity
for future improvement.

When running these experiments, the primary phone
recorded the base delay while the secondary continuously
sent packets; the results, hence, suggest that the two-phone
setup had minimal interference.

5.5 Web browsing test

We evaluated CellReplay’s accuracy for the web browsing by
fetching both landing and internal pages (listed in Table 3)
using HTTP/1.1 and HTTP/2. As before, we conducted these
tests under “good” network conditions, with the UEs placed
near a window. For each operator, we conducted four exper-
iments, with each randomized experiment consisting of 10
trials. Each trial included fetching five pages using the live
network and two recording sessions—one for CellReplay and
the other for Mahimahi. Each test and recording session lasted
for 60s. In total, we spent approximately 9.33 h conducting
these experiments.

CellReplay outperforms Mahimahi across all page load
tests (Figure 11). It achieves an emulation distribution error
between 1.2%-17.7%, with a mean error of 6.7%. In contrast,
Mahimahi has errors ranging from 4.5% to 42.6%, with a
mean error of 17.1%. On average, CellReplay reduces em-
ulation error by 60.8% for web-browsing apps compared to
Mahimabhi. Page load traffic is typically dominated by small
object transfers, which are sensitive to RTT and categorized as
light traffic. Mahimahi’s underestimation of RTT and overes-
timation of PDOs from the Saturator lead to significant errors
for small flows (see §5.6). All Mahimabhi’s errors stem from
underestimating all PLTs, with a mean PLT of 2637 ms com-
pared to 2918 ms in real networks. Meanwhile, CellReplay
accurately captures the network RTT and provides a better
representation of real available bandwidth for these transfers,
although some error still persists.

Below, we examine two dimensions to highlight CellRe-
play’s edge over Mahimabhi.

Across different operators. CellReplay maintains low
mean errors for both operators: 6.4% on T-Mobile and 7.1%
on Verizon. Mahimahi has a mean error of 13.2% on T-Mobile
and an even higher 21% on Verizon. Mahimahi’s poor perfor-
mance on Verizon is expected: Verizon tends to assign small
bandwidth for small file transfers (see §5.6), and page loads
primarily involve fetching small objects.

Across different protocols. CellReplay performs well on
both HTTP/1.1 and HTTP/2, with mean errors of 5.8% and
7.7%, respectively In contrast, Mahimahi shows poorer ac-
curacy, with a mean error of 12.6% on HTTP/1.1 and an
even higher 21.6% on HTTP/2. The multiplexing behav-
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live network and emulations.

ior of HTTP/2 may lead to a more complex traffic pattern
compared to HTTP/1.1, leading to more frequent medium-
sized flows. As a result, CellReplay often uses an interpolated
PDO, increasing the error. For Mahimabhi, the issue is even
more pronounced, as it always applies the heavy rate, signifi-
cantly underestimating flow completion times. Consequently,
both methods experience higher errors for HTTP/2 than for
HTTP/1.1.

5.6 Random file downloads test

To further evaluate CellReplay’s accuracy, we conducted ran-
domized file download tests with small-sized files (1 KB to
250 KB) and medium-sized files (1 MB and 10 MB) on both
T-Mobile and Verizon. Unlike the web-page loads, download
tests are not affected by non-network-related computations
(e.g., JavaScript parsing). Additionally, unlike the packet train
test, which sends fixed train sizes over time, the download
test is fully random: the client selects each file randomly from
a predefined list. This live experiment consisted of 20 ran-
domized trials, each including: two test workloads (small
and medium file downloads) and two recording sessions
(Mahimahi and CellReplay). Each test and recording session
ran for 60 s, resulting in a total experiment duration of 80 min
per network operator. All tests were conducted under “good”
network conditions.

Small-sized files. Figure 12 shows the file download times
for sizes between 1 KB and 250 KB. Consistent with the ob-
servation in §5.4, download times do not conform to a straight
line. Mahimabhi significantly underestimates (mean) download
times, with errors ranging from 8.4% to 20.7% on T-Mobile
and 7.9% to 49% on Verizon. CellReplay manages to capture
and emulate the non-uniform bandwidth availability with its
light and heavy PDOs, resulting in significantly lower mean
download time errors: 0.5%-3.5% on T-Mobile and 0.2%-
22.4% on Verizon. CellReplay ’s error increases with larger
file sizes (e.g., 250 KB on Verizon) as it must interpolate once
packet sequence lengths exceed a certain threshold.

Medium-sized files. CellReplay achieves a mean distribu-
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tion error of 9.14% for 1 MB downloads and 6.54% for 10 MB
downloads across both providers. In comparison, Mahimahi
produces significantly higher errors of 23.35% and 17.06%,
respectively, for the same file sizes. Surprisingly, Mahimahi’s
error increases further for 10 MB files, despite expectations
that large file transfers would be dominated by heavy PDOs
(i.e., the Saturator rate). We suspect that Mahimahi’s inaccu-
racy stems from a combination of base RTT underestimation
and available bandwidth overestimation. Refer to §E.3 for the
full results, including mean file download times for 1 MB and
10 MB files and their respective distribution emulation errors.

5.7 Interpolation effectiveness

We evaluated the impact of CellReplay’s PDO interpolation
on emulation accuracy by comparing it to two variants: Cell-
Replay with only light PDOs (CellReplay-light) and Cell-
Replay with only heavy PDOs (CellReplay-heavy) for web
page loading and file downloads. CellReplay-heavy resem-
bles Mahimahi but incorporates variable base delay and delay
compensation based on packet size. CellReplay-light does not
transition to heavy PDOs when the light PDOs end; instead,
it restarts from the beginning. We used T-Mobile and Verizon
traces, as in §5.5 and §5.6, and reported the average error
across both operators.

Figure 14 presents the results. For web browsing,
CellReplay-light performs similarly to CellReplay with in-
terpolation (i.e, our CellReplay) and beats CellReplay-heavy,
as web browsing is a mostly light workload. For the 1 KB
download, all three versions perform similarly since RTT
dominates performance and bandwidth is less critical. As the
workload increases to 10 KB, 100 KB, and 1 MB, bandwidth
becomes a more significant component of download time,
but CellReplay-heavy’s emulation of bandwidth is inaccurate
in this regime, leading it to have higher errors. However, at
10 MB, CellReplay-heavy’s error decreases as the workload
starts to resemble the Saturator. Meanwhile, CellReplay-light
excels for smaller downloads (10 KB and 100 KB) but strug-
gles with larger files (1 MB and 10 MB). This suggests that
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Figure 14: Emulation distribution error of CellReplay with and
without light and heavy PDOs interpolation.

neither light nor heavy PDOs alone can accurately emulate
the characteristics of the wireless channel.

Notably, the variable base delay and delay compensation
in CellReplay-heavy reduce error to 11.67%, compared to
Mahimahi’s 18.77%. The error is further reduced by incorpo-
rating PDO interpolation, as in our full CellReplay system,
bringing the error down to 5.68%. These results confirm that
interpolating between light and heavy PDOs significantly im-
proves emulation accuracy.

5.8 Mobility and other network conditions

We also evaluated CellReplay’s accuracy under low and mod-
erate mobility. For low mobility, a user walked through an
office corridor in a loop while carrying the UE (connected to
Verizon). For moderate mobility, the user drove around a uni-
versity campus in a loop with the UE (connected to T-Mobile).
We followed a fixed path while walking or driving in a loop
to ensure consistent comparisons across trials. On average, a
loop took 75 s while walking and 220 s while driving.

To reduce the number of tests, we performed web page
load tests using only three HTTP/1.1 landing pages — L1,
L3, and L5, which represent small, medium, and large web
pages (§5.2), respectively. We also tested repeated 1 KB file
downloads. To minimize variance, we limited each trial to
two live tests and two recordings. We conducted two separate
experiments: the first, with 1 KB file download and L3, and the
second, with L1 and L5. We conducted 10 trials for walking
experiments and 5 trials for driving experiments. Calibration
was performed only once at the starting point. In total, we
spent 1.67 h walking and 2.45 h driving around the loop.

Figure 13 shows the emulation distribution error for Cell-
Replay and Mahimahi. Network conditions are more vari-
able under driving, which may also introduce packet drop,
a factor that CellReplay does not capture*. We indeed con-
firmed that driving triggered at least two handovers’, and a
few packets were dropped during certain periods of record-
ing. Consequently, CellReplay’s accuracy suffers more un-
der driving than walking. However, despite this limita-
tions, CellReplay still provides a noticeable improvement
(1.8 times) over Mahimabhi in both mobility scenarios. This

4This refers to the drop in IP packets. CellReplay can still capture the
effects of the handover process through the increase in the base latency and
PDO blackout and emulate it accordingly.

SThere were a brief period (< 1 second) when the two devices were
connected to different base stations due to the handovers were not done at
the same time.
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Figure 15: (a) Mean ABR bitrate selection result. Mahimahi shows
positive bias to BOLA. (b) Reported estimated bandwidth from RB.

improvement stems from CellReplay’s ability to capture more
performance variability than Mahimahi, as indicated by the
shape of the CDF curve, which is closer to the live network’s
curve compared to Mahimahi. Refer to §E.2 for the CDF
curve for 1KB download and L3 page load times.

Additionally, we tested CellReplay in a basement and a
crowded library. In both conditions, CellReplay produced sig-
nificantly lower error compared to Mahimahi, with an emula-
tion distribution error of 5.74% (vs. 15.22%) in the basement
and 8.47% (vs. 22.51%) in the crowded library. Refer to E.1
for more details.

5.9 Use case: evaluating ABR algorithms

Finally, we demonstrate a common application for record-
and-replay emulation: evaluating ABR algorithms for 4K
video streaming. ABR algorithms are reactive, meaning their
bitrate selection for video chunk downloads can be influenced
directly (rate-based) or indirectly (buffer-based) by observed
network performance. Thus, accurately emulating network
conditions is crucial to avoid bias in algorithm evaluation.

We compared three ABR algorithms® from [4] running on
Verizon 5G under “good” network conditions using CellRe-
play and Mahimahi emulation: (1) Buffer-based (BB) and (2)
BOLA, which make bitrate decisions based on buffer occu-
pancy, and (3) Rate-based (RB), which estimates throughput
from past chunk download times to select the next bitrate.
Given the high download bandwidth reported by Saturator
(270 Mbps), all three algorithms eventually select the highest
bitrate (17 Mbps) and do not experience rebuffering. How-
ever, their startup phase [17] behavior differs, so we focused
on bitrate selection for the first 10 chunks as our QoE metric.
We conducted 10 randomized trials, each with three test work-
loads (streaming video using three ABRs) and two recording
sessions (Mahimahi and CellReplay). Each test and recording
session lasted for 30s.

Figure 15a presents the mean bitrate results. As expected,
Mahimahi reports a higher bitrate than Live-5G across all
three ABRs, with an average overestimation of 17.73%, com-
pared to 5.89% on CellReplay. This aligns with our findings
that Mahimahi tends to overestimate network performance,
leading to inflated application performance. But, more im-
portantly, this also affects protocol evaluation. Mahimahi’s

This setup also includes MPC [44] and Pensieve [20], but these were not
tested, as MPC requires modifying the hardcoded MPC table, and Pensieve
requires retraining.



results suggest that RB and BOLA are the best protocols, with
BOLA significantly outperforming BB by 30.43%. However,
in reality in this environment, BOLA performs significantly
worse than RB and is similar to BB. CellReplay ’s results are
much more aligned with the live network. This discrepancy is
largely due to Mahimahi’s overestimation of available band-
width, particularly for smaller initial chunks, causing ABRs
to quickly converge to the highest bitrate. In Figure 15b, we
present the measured bandwidth estimation from RB, which
shows that Mahimahi overestimates bandwidth by 44.38%
in the median, compared to 7.96% on CellReplay. Unlike
Mahimabhi, CellReplay does not suffer from this bias and pro-
vides more accurate relative performance of ABRs due to its
dual light and heavy rate approach.

6 Discussion and future work

We discuss CellReplay’s use cases, limitations, and plans for
future improvements.

Use cases. As shown in §5.9, CellReplay can be used to
evaluate new applications and protocols on cellular networks
and provide more accurate emulation of real network perfor-
mance compared to the state-of-the-art approach. CellReplay
is superior for latency-sensitive applications, as it can emu-
late base delay variability, and applications with variable flow
sizes, as it can emulate the bandwidth-workload dependency.
Adaptive applications (e.g., ABR) that react to network mea-
surement will also receive more accurate performance results
with CellReplay.

We also provide traces that researchers and developers can
use for testing on CellReplay. While recording traces with
CellReplay requires a bit more effort than Mahimahi due
to the use of two phones, this is a minor issue, as once a
diverse set of traces is recorded, users can easily replay them
without the phones (just as in Mahimahi). Since CellReplay’s
implementation is based on Mahimabhi’s shell, unmodified
applications can easily use CellReplay emulated interface.

Inaccuracies in CellReplay. While we have made signif-
icant progress in faithfully replaying cellular performance,
CellReplay involves several simplifications and assumptions:
(1) CellReplay does not record and replay random packet
losses (although it drops packets when the queue overflows
and can be manually configured for a set random drop rate).
We notice, however, that cellular links under stationary condi-
tions are robust to random packet drops (e.g., due to packet
corruption) due to link-layer retransmission [22]. However,
packet drops are more frequent during handovers in mobil-
ity [15]. (2) CellReplay uses fixed calibration parameters
before each recording session. A more adaptive selection of
parameters could help when network conditions change dur-
ing recording. (3) CellReplay’s two-phone setup has some
weaknesses. Under mobility, both phones may connect to dif-
ferent base stations and report different performances. More-
over, although we did not observe major interference, greater
interference may occur with other providers and conditions.

In the future, we will be able to use a single phone with
Dual-SIM Dual-Active (DSDA) modem [1] for recording, as
DSDA allows simultaneous traffic transmission across two
SIMs. Each of these areas represents an opportunity for future
improvement. We note, however, that our evaluation results
account for the errors caused by these inaccuracies.

Improving CellReplay interpolation accuracy. A
straightforward approach is to gather additional data points
for interpolation. However, since we need to record data si-
multaneously (e.g., while walking or driving), we are limited
to running only a few workloads with a few phones. An-
other viable approach is to leverage ML to model complex,
workload-dependent network performance and providers’ re-
source allocation policies. We can train an ML model based
on recorded workload and performance traces to predict net-
work performance (e.g., PDOs) for a given test workload.
However, this approach may require extensive data collection
to capture RAN scheduling behavior, increasing the recording
effort and making it time-consuming.

Adding more cellular network specific features. Cell-
Replay could be improved by explicitly emulating cellular
network-specific features, especially those that affect applica-
tion performance. These include radio resource control (RRC)
delays, handover, and other relevant factors.

Other limitations. CellReplay probes UDP traffic to record
network traces, meaning it cannot capture the effects of net-
work discrimination based on IP protocol types, such as from
TCP middlebox intervention [8].

7 Conclusion

This paper exposes the difficulty of accurate record-and-replay
emulation and presents CellReplay, which more faithfully cap-
tures real-world cellular network performance characteristics.
CellReplay’s approach of dual-workload recording and inter-
polated replay provides the community with a more accurate
platform for evaluating research in cellular environments. We
also hope this work inspires the community to explore future
designs that can make record-and-replay emulation even more
faithful to live deployments.
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A Calibration details

A.l1 Inferring comp(): derivation

We examine the impact of packet size on RTT by sending
packets with sizes sampled uniformly at random from {100,
200, ..., 1400} bytes every S0 ms to a receiver that replies to
each with a 100-byte ACK. After running for a configurable

time (5 minutes for our case), we calculated the mean RTT
for each packet size x, denoted as u,. The compensation delay
for a packet size s, or comp(s), is computed as follows. If
5 < 100, comp(s) = 100 — H1400- Otherwise, comp(s) = (1 —
)i + o j — a0 where i and j are the tested packet sizes
immediately less than and greater than s, respectively. The
parameter a is set to linearly interpolate between the two
observed means, i.e., o = (s —i)/(j —i). The compensation
is always relative to 1400-byte packets because that is the
size used to measure base RTT. This procedure is repeated
separately for uplink and downlink measurements, with sender
and receiver roles swapped.

A.2 Inferring F': derivation

Assume that internally, the bottleneck link remains in its
heavy-workload state while it has queued packets to send,
and then once it remains idle for some time F, it returns to the
light-workload state. With the gap of G, this state change is
just barely reached. Thus, we have S+ Gy,i, = Q+ F, where S
is the time the sender takes to send the train, G,,;;, is the time it
waits before beginning the next train, and Q is the time for the
link to entirely clear the packet train out of its queue. Since
S and G,,;, are both timed in user space, S is close to zero.
Furthermore, because we have assumed the link of interest
is the bottleneck, Q is observable at the receiver as the time
between receiving the first and last packets of the train, i.e.,
Flast (Gmin)- Thus, we can estimate F = Gy — Fiast (Gmin)- In
Figure 8b, the Gy is 30ms, and its rigg (gmin) 18 23.23 ms.
Thus, we compute F' = 6.77 ms (and round it to 7 ms when
setting the parameter).

A.3 Inferring B.

We use a classical max-min approach [11] to infer the bottle-
neck buffer size using the difference between the minimum
and maximum RTT of packets under heavy load. Specifically,
we run iperf and monitor it with tcpdump. The buffer size is
calculated as (RT Tyqx — RT Tyin) - C, where C is the observed
link capacity [10].

B CellReplay implementation

CellReplay’s record client is implemented in Java to ease
porting into Android. Meanwhile, the record server is im-
plemented in Python 3. The client accepts workload con-
figurations as user inputs, which are determined from the
automated calibration performed separately. These configura-
tions are then sent to the CellReplay server. For packet train
workloads, the user must input: the number of packets per
uplink and downlink train, and the gap between trains. Satu-
rator workload requires the maximum upload and download
bandwidth, which can be determined using other bandwidth
probing tools (e.g., speedtest.com or iperf). Both client and
server send 1400-byte UDP packets via a socket.
CellReplay’s replay is built on top of the Mahimahi shell,
extending all of Mahimahi’s core functionality. This includes



Table 2: All tested conditions that includes stationary, walking, and driving scenarios. We tested T-Mobile (TM) and Verizon (VZ)
networks under 5G mid band (MB) and low band (LB). We also showed the used CellReplay configurations.

Name Description Op. | Net.type | CellReplay config
stationary-good UESs were in an office near a window M | SGMB U=25, D=75, G=50, F=3
Ve VZ | 5GLB | U=10, D=100, G=50 F=7
stationary-crowded | UL Were in acrowded VvZ | 56LB U=25, D=100, G=50, F=7
library during rush hours
stationary-weak UEs were in a basement ™ | 5GLB U=25, D=75, G=50, F=5
of a building with no window
s Iking th h ffi
walking User was walking through an office VZ | 56LB | U=10, D=50, G=100, F=7
corridor in a loop while holding the UEs
driving UEs was with the user driving in T™ | 5GMB | U=10, D=75, G=100, F=5
a loop around the university area
Walking (Verizon) Driving (T-Mobile)
1.0 4 1.0 1 1.0 4 1.0 A
0.8 0.8 A 0.8 0.8
w 0.6 A 0.6 w 0.6 A 0.6 1
a a
© 0.4 — Live 0.4 © 0.4 1 0.4
0.2 = CellReplay | 3 0.2- 0.2-
= Mahimahi
0.0 - 0.0 A 0.0 A 0.0 1

26 2.8 3.0 3.2 3.4 36
dropbox.com PLT (s)

25 30 35 40 45 50 55 60
1KB download time (ms)

26 2.8 3.0 3.2 34 36
dropbox.com PLT (s)

30 35 40 45 50 55 60 65 70
1KB download time (ms)

Figure 16: CellReplay manages to capture more application performance variability under mobility compared to Mahimahi. We cut the CDF

graph as the tail is too long.

the ability to run unmodified applications, or the option to
nest the shell with another Mahimabhi shell, such as the HTTP
ReplayShell. The CellReplay shell accepts the base delay,
light PDO trace, and heavy PDO trace as inputs. Similar to
the Mahimahi network emulator shell, CellReplay controls a
virtual network device (TUN) and captures all IP datagrams
from an unmodified application running inside the shell. It
then delays each packet before sending it to another interface,
such as loopback or Ethernet.

C Experimental conditions
The environments used for evaluation are listed in Table 2.
D Tested web pages list

The list of web pages used for testing and its details on page
composition is detailed in Table 3

E More evaluation results

E.1 Non-ideal network conditions

We evaluated CellReplay’s accuracy under two challeng-
ing network conditions. In this first condition, labeled as
‘stationary-weak’, UEs connected to T-Mobile were placed
in a windowless basement inside a building. In the second
condition, labeled as ‘stationary-crowded’, we placed the
UEs (connected to Verizon) in a library during crowded or
rush hours. Both web-page loads and file downloads were
tested under these conditions. To reduce the number of tests
and minimize variance, we only selected pages corresponding

Table 3: List of web pages used for testing along with details
on the page composition, including the number of objects
(“#objs.”), and the mean (“avg. sz.”) and total (“tot. sz.”)
compressed object sizes (both in KB). “PT” indicates page

type.

PT ID URL #objs.  avg. sz. tot. sz.
L1  bing.com 2 205.53 411.06

@ L2 microsoft.com 36 24.66 887.64
b L3  dropbox.com 76 22.15 1683.49
S L4 glassdoorcom 64 4323 2766.46
L5  discord.com 37 172.86  6395.86

11 en.wikipedia.org/wiki/Naivety 19 13.51 256.64

3 12 box.com/about-us 48 14.39 690.95
§ 13 etsy.com/payments 50 28.92  1446.22
;E. 14 youtube.com/user/ESPN 44 56.88  2502.53
5 colubrina.tumblr.com 69 116.57  8043.10

to the 10, 50, and 90™ percentiles of the HTTP/1.1 landing
pages. We tested random file downloads with sizes ranging
from 1 KB to 10 MB. The experiment was split into two parts:
one for web-page loads and the other for file downloads. Each
part consisted of 10 randomized trials. In the first part, each
trial included loading three pages and two record sessions,
while the second part had one random file download test and
two record sessions per trial. Every test and record session
lasted 60s. The total experiment time under each network
condition was 80 minutes.

Per Figure 17, across the two network conditions and
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Figure 17: The web PLT and file download emulation distribution
error when testing under non-ideal stationary cases.

Table 4: Mean file download time (in ms) of medium-sized
files with its emulation distribution error.

IMB 10MB
2 Live 142.52 1056
§ CellReplay  135.88 (7.82%)  978.18 (8.19%)
2 Mahimahi  117.68 (20.17%)  847.45 (20.44%)
s Live 155.18 1069.25
& CellReplay  135.68 (10.46%)  974.98 (4.88%)
= Mahimahi  106.63 (26.5%)  762.3 (23.67%)

providers, CellReplay has an average distribution error of
5.96% for web-page loads and 7.9% for file downloads.
Mahimahi, in contrast, has mean distribution errors of
13.63% and 22.02% for the same applications, respectively.
Even under challenging conditions (stationary-weak and
stationary-crowded), CellReplay still offers a respectable
error rate and outperforms Mahimahi.

E.2 Experiments under mobility

Figure 16 demonstrates CellReplay’s ability to capture appli-
cation performance under mobility scenarios more accurately
than Mahimahi.

E.3 Medium-sized file download test

Table 4 shows the mean file download time alongside its
distribution emulation error for CellReplay and Mahimahi,
compared to the live networks.

F Ethics

We note that CellReplay cannot be used to collect other users’
packets; it only collects traces of its own user. Moreover,
traces collected by CellReplay do not contain any private
information. Hence, we believe our work does not raise any
ethical concerns.
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